Philosophy 500 — June 9: Quantifier logic

Recall from before:
(1) Some A’s aren’t B’s
2) Not all A’s are B’s

(1)
(2) (2)
(3) All A’s are B’s (3)
(4) (4)
() ()
(

Some A’s are B’s

5) No A’s are B’s
6) Every A isn’t a B (6) Vz(Ax — —Bx)

(1) and (2) are logically equivalent to each other, and are the negation of (3).
(5) and (6) are logically equivalent to each other, and are the negation of (4).

We will use the same key as before:

UD: all people Bx: x is a bouncer. Ixyz: x introduced y to z.
a: Alice Mx: x is a merchant Kxy: x knows y.

b: Betty Px: x is a plumber. Lxy: x likes y.

c¢: Chris Tx: x is tall. Oxy: x is older than y.

Syntax (Formal rules of the quantifier logic language)

We will want to be able to say what is and is not allowed in using our symbolic
language. Before this, though, we need some new concepts. What is said with x should
be taken to apply to the other variables as well (e.g. y-quantifier is defined accordingly,
etc.).

The scope of a quantifier is what is inside the parentheses that follow that quantifier.
An z-quantifier is either Vz or Jz.

An instance of x is called a bound instance if it is inside the scope of an z-quantifier.

An instance of x is called a free instance if it isn’t inside the scope of an x-quantifier.

x is free in a formula if the formula contains no z-quantifiers.

x is bound in a formula if formula contains z-quantifiers.

The scope is very important. To see this, notice that the following sentences don’t
mean the same thing:

Va(Px — Bc)

For each person, if that person is a plumber, then Chris is a bouncer.

If someone is a plumber, then Chris is a bouncer.

Va(Px) — Bce

If each person is a plumber, then Chris is a bouncer.

If everyone is a plumber, then Chris is a bouncer.

As in sentential logic, we will define what is and is not proper by starting with the
basic components and building up using rules.

A proper formula is one that’s constructed using the rules of the language, and is
completely unambiguous as to its meaning.

These rules are:

1. A predicate together with the right number of inputs (constants or variables) is a
proper formula.

2. If A is a formula, so is —~A.

3. If A and B are proper formulas, so are (A — B), (A < B), (A& B), and (A V B).

4. If A is a proper formula which doesn’t contain any z-quantifiers, then Vz(A) and
Jy(A) are also proper formulas.

Anything else is not a proper formula. In particular, a predicate with the wrong number
of inputs, an z-quantifier in the scope of another z-quantifier, a quantifier with a constant
instead of a variable, etc. is not allowed. This means that whether or not something is a
proper formula can only be decided if we have the key so we can know what the predicates
and constants are and how many inputs each predicate needs.

A proper sentence is a proper formula in which there are no free instances of any
variable.

A proper sentence is the sort of thing which could be true or false (which matches our
previous definition).

A proper formula, on the other hand, could be something like Pz, which can’t be true
or false because z is a variable, so it lacks meaning by itself.

But we need to define ‘proper formula’ in order to define ‘proper sentence’.

Every expression in quantified logic is one of these:

(a) Not a proper formula (and, so, not a proper sentence either).
(b) A proper formula, but not a proper sentence.

(c) A proper sentence (and, so, also a proper formula).

The identity predicate

There are still some sentences we can’t translate. For example: “Betty is the only
plumber”.

We could rephrase is as “Betty is a plumber, and no one other than Betty is a plumber”.
But we still can’t translate the second half, because we have no way of saying something
like “x isn’t Betty”. So we’ll introduce a new operator, called the identity operator

Identity predicate: © = y means x is y‘

Examples

1. Betty is the only plumber
A person is a plumber if and only if it’s Betty.
For every person, that person is a plumber if and only if it’s Betty.
Vo(Px <z =10)

2. No tall person other than Chris is older than Betty.
No one who is tall and isn’t Chris is older than Betty.
—Jz((Tx & —x = ¢) & Oxb)
3. Some plumber knows everyone except Chris.
There is a plumber who knows everyone who isn’t Chris and doesn’t know Chris.
There is a plumber for whom the only person they don’t know is Chris.
Jx(Px & (the only person x doesn’t know is Chris))
Jz(Px & Vy(Kzy < —y = c))
4. There’s at most one plumber.
If a person is a plumber, then no other person is.
Va(Pz — Vy(-z =y — =Py))
Va(Prx — Vy(Py — z = y))
5. There’s exactly one plumber.
Someone is a plumber, and there’s at most one plumber.
Jx(Pzx) & Vo (Px — Vy(Py — y = x))
There’s a person such that they’re the only plumber.
Jz(Vy(Py < y = x))

Notice this crucial difference:
“Betty is the only person who isn’t a plumber” affirms Betty isn’t a plumber
“Everyone other than Betty is a plumber” leaves open whether Betty is a plumber.

Exercises

UD: all people Bx: x is a bouncer. Ixyz: x introduced y to z.
a: Alice Mx: x is a merchant Kxy: x knows y.

b: Betty Px: x is a plumber. Lxy: x likes y.

c: Chris Tx: x is tall. Oxy: x is older than y.

1. Every merchant other than Alice knows a tall plumber.

[\

. If anyone is a tall merchant, it’s Chris.

3. Chris isn’t the only bouncer, but he is the only tall bouncer.

UD: all people Bx: x is a bouncer. Ixyz: x introduced y to z.

a: Alice Mx: x is a merchant Kxy: x knows y.

b: Betty Px: x is a plumber. Lxy: x likes y.

c¢: Chris Tx: x is tall. Oxy: x is older than y.
4. Betty likes every merchant who’s older than every plumber.

5. Not every merchant who has been introduced to Chris likes him.

6. Betty knows the only plumber.

7. No merchant whom Betty knows is older than every plumber, unless it’s Chris.

8. Betty is the only person who hasn’t been introduced to Alice.

9. Alice and Betty are the only two plumbers.

Homework #8, Due June 14, 2010

A. Translate each of the following sentences in the space provided, using the key given.
Most of these are complicated, so I recommend doing the translation in steps on scratch
paper first. (2 pts. each)

UD: all dogs Px: x is a pomeranian. Lxyz: x likes y better than z.
f: Fido Cx: x is a cockapoo. Bxy: x has bitten y.

e: Eric Fx: x can fetch. Oxy: x is older than y.

k: Kara Hx: x is hairy. Sxy: x smells worse than y.
1. Every dog other than Fido and Eric can fetch.

2. If any pomeranian older than Fido is hairy, it’s Kara.

3. Every cockapoo smells worse than Kara, unless it’s bitten a pomeranian.

4. Eric is the only hairy cockapoo, but Fido is also a hairy cockapoo.

5. Some cockapoo likes Fido better than it likes any dog which smells worse than Kara.

6. Only hairy pomeranians smell worse than every cockapoo.

7. No cockapoo which has bitten Kara is older than even one hairy dog.

8. Some pomeranian hasn’t bitten any dogs, but smells worse than all dogs other than
itself.

9. Fido has bitten the only hairy cockapoo, and it has also bitten Fido.

UD: all dogs Px: x is a pomeranian. Lxyz: x likes y better than z.

f: Fido Cx: x is a cockapoo. Bxy: x has bitten y.
e: Eric Fx: x can fetch. Oxy: x is older than y.
k: Kara Hx: x is hairy. Sxy: x smells worse than y.

B. For each of the following, indicate whether it’s not a proper formula (NF), a proper
formula but not a proper sentence (F), or a proper sentence (S). (1 pt. each)

1. Vo(Lfx — Sx)

2. Hr — Va(Hz V Fz)

3. =3f(Fx — Bfz)

4. Ya(-3y(zf & -Oxy))

5. V2(Oez — Bz V Lz)

6. Vy[(Hy & Sey) — —3u(Laky)]
7. =Vy[Cy V Jx(~Shx V Fy)]

B. For each of the following, state whether it’s true or false. If it’s true, explain in
paragraph form and in detail how you can be sure of that. If it’s false, give a
counterexample (i.e. an example which shows it’s false). (2 pts. each)

. If A~ (BV) is a tautology, so is B < C.
. If B& C' is contingent, either B or C' is contingent.

1
2
3. If a valid argument has contingent premises, it’s conclusion is contingent.
4. If A, B — C . D is valid, then {A, B, C, D} is inconsistent.

5

If a formula contains a free instance of x in it, then it’s allowed to enclose it in
parentheses and add an z-quantifier in front.

