
Philosophy 500 — May 19th: Partial Truth Tables

In many cases, we don’t need to draw a whole truth table in order to obtain our result.
For example, if we’re trying to find out whether an argument is valid or not, as soon as we
get a row in which the premises are all true but the conclusion is false, we know (from the
definition of validity) that the argument is invalid. On the other hand, if we keep going
row-by-row until we’ve exhausted all the possibilities without such a row, then we know
the argument is valid. But if we were doing an 8-row truth table, and have only done the
first 7 rows, it’s still possible that the eighth row will turn out to make the premises true
and the conclusion false, so we still can’t be sure whether the argument is valid or not.
Therefore:

One row of a truth table can be enough to show that an argument is invalid, but a

complete truth table is required to show that an argument is valid.

Similar considerations apply to other things we want to find out: whether a sentence
is a tautology, whether a sentence is a contradiction, whether a sentence is contingent,
whether a set of sentences is consistent, whether two (or more) sentences are logically
equivalent.

For each of these, figure out (based on the definitions), whether a complete truth table
is required, or whether a partial one is enough. If a partial truth table is enough, figure
out how many rows it needs to have as a minimum.

To show We need To show We need

Argument valid complete Argument invalid 1 row
Sentence a tautology Sent. not a tautology
Sentence a contradiction Sent. not a contradiction
Sentence contingent Sent. not contingent
Sentences consistent Sent. inconsistent
Sentences equivalent Sent. not equivalent

However, even if we know we only need one row to show that an argument is invalid,
we may not know ahead of time whether such a row (i.e. one in which the premises come
out true and the conclusion false) exists, or which row it is. One option is to just start
doing a complete table, and to stop once we find such a row, since then we’ve already
shown the argument is invalid. But as far as we know, it might be the last row, so we’d
end up doing a whole truth table when only one row was necessary. If there are more
than 2 variables in our sentences, this could take a long time. So it would be better if
there was a way to just get a row that shows the argument is invalid, without having to
bother with the others. For this, we’ll have to work backwards, starting from the truth

values we’re looking for, and then gradually figuring out the truth values we need for the

sentence letters. This is essentially a matter of deduction, combined with dividing into
cases, somewhat like playing Sudoku.
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Examples

1. Suppose we want to show that the argument: A ∨ B ∴ A → B is invalid. We first
draw a truth table, but we don’t fill in any of the rows. What we’re looking for is a row
in which A ∨ B is true, and A → B is false. So we write T under A ∨ B, and F under
A → B. Now we want to fill out the rest, avoiding, as much as we can, making choices.
Since we know A ∨ B is true, we know that we can’t make both A and B false, but we
don’t know whether we should make A true or B (or both). On the other hand, we also
know that A → B is false, and that can only be the case if A is true and B is false. So
we fill in these values, and then finish the table based on that. When we do that, we see
that we don’t run into any contradictions, so we’ve successfully found the row.

2. Suppose we want to show that the argument ¬(A ∨ B) ∴ (A → B) & (B → A)
is invalid. We start as before, writing T under the ¬ in the premise, and F under the
& in the conclusion. Now, to make the & false there are 3 possibilities, so we’ll avoid
that if we can. On the other hand, to make the ¬ in the premise true, there’s only one:
making A ∨ B false, so we write F under the ∨. And there’s only one way A ∨ B can
be false, which is if A and B are both false, so we fill those in, and we can then finish
the table. But when we do that, we see that the conclusion becomes true, contradicting
our assumption that it was false. Since we haven’t made any choices here, we know that
in fact it’s impossible to find the row we’re looking for: the argument is actually valid.
We implicitly have here a proof that it’s valid. We can make it explicit by giving the
reasoning: Suppose ¬(A ∨ B) is true. Then A ∨ B must be false. But this means that A

and B are both false, in which case (A → B) & (B → A) is true, as can be shown by a
row of its truth table. So the premise logically implies the conclusion.

3. Suppose we want to show that the argument A ∨ B, B ∨ C ∴ A ↔ C is invalid.
Here we see that there’s no way to proceed without making a choice at some point. There
are three ways for A ∨ B to be true, three ways for B ∨ C to be true, and two ways for
A ↔ C to be false. So we just have to try one, and if it doesn’t work we can then try the
other one. So first we can try making A true and C false. Now, since B ∨ C had to be
true, and C is false, we know we have to make B true. We then finish the row and see
that there are no contradictions, so we’ve shown the argument is invalid.

Exercises

1. Show that the argument “(A & B) → A ∴ (A → B) & (B → A)” is invalid.
2. Show that (A → B) & (A ∨ B) is contingent.
3. Show that the argument “A → B, B → C, C ∴ A” is invalid.
4. Show that (B → A) ∨ (A → B) is not logically equivalent to A ↔ B.
5. Show that (A ∨ B) & (A → C), B → C, and ¬C ∨ ¬B form a consistent set.
6. Show that the argument “C → A, (A & B) ∨ (A ↔ B)

∴ (B & C) & (A → B)” is invalid.
7. Show that the following argument is invalid: “Bob only likes Chinese food if Cindy

isn’t Chinese. Cindy is Chinese unless Bob likes Chinese food. Therefore, Bob likes
Chinese food and Cindy is Chinese”.
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Relating logical concepts (questions from HW #3 and #4)

For each of the following, state whether it’s true or false. If it’s true, explain in detail
how you can be sure of that. If it’s false, give a counterexample (i.e. an example which
shows it’s false).

1. If A → B is true, then A ∴ B is a valid argument.

2. If an argument has a conclusion which is a contradiction, it isn’t valid.

3. If A and ¬B are logically equivalent, then {A,B} is an inconsistent set.

4. If {A,B,C} is a consistent set, then so is {A ↔ B,C}

5. If ¬A ↔ B is contingent, then A and B aren’t logically equivalent.

6. If A is contingent and B is a tautology, then A → B is a tautology.

7. If A is contingent and B is a tautology, then A ↔ B is a contradiction.

8. If A ↔ B is a contradiction, then A and B are both contradictions.

9. If the set {A,¬B,B → A} is consistent, then the argument A,B → A ∴ ¬B is valid.

10. Every argument which is sound can be made unsound by adding a premise to it.
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Homework #5, Due June 2, 2010

A. Answer each of the following by means of a truth table. Try to avoid drawing a
complete truth table unless it’s necessary. (3 pts. each)

1. Is the sentence [(A ∨ (B → C)) & (¬A → C)] → C a tautology, contingent, or a
contradiction?

2. Are the sentences ¬(A & B) ∨ ¬(B ∨ A) and ¬(¬A ∨ ¬B) → (¬A ∨ ¬B) logically
equivalent?

3. Is the argument A → (B → C),¬B ∨ ¬C,B ∴ ¬A valid?

4. Is the set {A ∨ ¬B,¬A → D,¬B → ¬A,D → (A & ¬B)} consistent?

B. For each of the following, state whether it’s true or false. If it’s true, explain in detail
how you can be sure of that. If it’s false, give a counterexample (i.e. an example which
shows it’s false). (2 pts. each)

1. If A → ¬A is true, A is a contradiction.

2. If A is a tautology and B is contingent, then A ↔ B is false.

3. If the set {A,B,¬C} is inconsistent, then ¬(A & B) ∨ C is true

4. If A → C and B are logically equivalent to each other, then the argument ¬C,B ∴ ¬A

is valid.
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